(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0) → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0) → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0), c)
Rewrite Strategy: INNERMOST
 
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0', c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0'), c)
S is empty.
Rewrite Strategy: INNERMOST
 
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
triple/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
S is empty.
Rewrite Strategy: INNERMOST
 
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
foldB, 
f, 
foldC, 
f', 
f''They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(8) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldB, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldB, foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(12) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldB, foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(14) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC, foldB
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0', 
0'), 
gen_0':s4_0(
n143_0)) → 
triple(
gen_0':s4_0(
0), 
gen_0':s4_0(
0)), rt ∈ Ω(1 + n143
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n143_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n143_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldB, f, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldB(
triple(
0', 
0'), 
gen_0':s4_0(
n2037_0)) → 
triple(
gen_0':s4_0(
0), 
gen_0':s4_0(
0)), rt ∈ Ω(1 + n2037
0)
Induction Base:
foldB(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldB(triple(0', 0'), gen_0':s4_0(+(n2037_0, 1))) →RΩ(1)
f(foldB(triple(0', 0'), gen_0':s4_0(n2037_0)), B) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), B) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(B)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →LΩ(1)
triple(gen_0':s4_0(0), gen_0':s4_0(0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(19) Complex Obligation (BEST)
(20) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(22) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(24) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(26) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
 
(27) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0', 
0'), 
gen_0':s4_0(
n4050_0)) → 
triple(
gen_0':s4_0(
0), 
gen_0':s4_0(
0)), rt ∈ Ω(1 + n4050
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n4050_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n4050_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →LΩ(1)
f''(triple(gen_0':s4_0(0), gen_0':s4_0(0))) →RΩ(1)
foldC(triple(gen_0':s4_0(0), 0'), gen_0':s4_0(0)) →RΩ(1)
triple(gen_0':s4_0(0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
 
(28) Complex Obligation (BEST)
(29) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
 
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
 
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
(34) BOUNDS(n^1, INF)
(35) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
 
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(37) BOUNDS(n^1, INF)
(38) Obligation:
Innermost TRS:
Rules:
g(
A) → 
Ag(
B) → 
Ag(
B) → 
Bg(
C) → 
Ag(
C) → 
Bg(
C) → 
CfoldB(
t, 
0') → 
tfoldB(
t, 
s(
n)) → 
f(
foldB(
t, 
n), 
B)
foldC(
t, 
0') → 
tfoldC(
t, 
s(
n)) → 
f(
foldC(
t, 
n), 
C)
f(
t, 
x) → 
f'(
t, 
g(
x))
f'(
triple(
b, 
c), 
C) → 
triple(
b, 
s(
c))
f'(
triple(
b, 
c), 
B) → 
f(
triple(
b, 
c), 
A)
f'(
triple(
b, 
c), 
A) → 
f''(
foldB(
triple(
0', 
c), 
b))
f''(
triple(
b, 
c)) → 
foldC(
triple(
b, 
0'), 
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
 
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(40) BOUNDS(n^1, INF)